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Shock wave dynamics in a discrete nonlinear Schinger equation with internal losses
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Propagation of a shock wa¥y&W), converting an energy-carrying domain into an empty one, is studied in
a discrete version of the normal-dispersion nonlinear &tthger equation with viscosity, which may describe,
e.g., an array of optical fibers in a weakly lossy medium. It is found that the SW in the discrete model is stable,
as well as in its earlier studied continuum counterpart. In a strongly discrete case, the dependence of the SWs
velocity upon the amplitude of the energy-carrying background is found to obey a simple linear law, which
differs by a value of the proportionality coefficient from a similar law in the continuum model. For the
underdamped case, the velocity of the shock wave is found to be vanishing along with the viscosity constant.
We argue that the latter feature is universal for long but finite systems, both discrete and continuum. The
dependence of the SW’s width on the parameters of the system is also discussed.

PACS numbds): 42.65.Tg, 05.45.Yv, 42.81.Dp

[. INTRODUCTION equation that supports them is the one considered in[BEf.
it is the usual NLS equation with thaormal dispersion
The discrete nonlinear Schdimger equatior(NLS), also  (which is necessary to make the cw state modulationally
called the discrete self-trapping equat[dh, is a well-known  stable, to which a single additional term, describing intrinsic
dynamical model with numerous physical applications rangdispersive(diffusionlike) losses, is added,
ing from nonlinear optics to the theory of molecular vibra-
tions [2]. Unlike its celebrated continuum counterpart, the iU, + (1/2)ug—[ulPu=iauy. (6N
NLS equation proper, the discrete NLS equation is not inte-
grable for systems with more than two sii@s, besides the This equation is written in the standard “fiber” notation
Hamiltonian, the model has only one more conserved quarl-11], with z t, andu standing for, respectively, the propaga-
tity), and it does not have exact soliton solutions. In spite otion distancereduced timgand envelope of the electromag-
this, it demonstrates a rich variety of dynamical behaviorshetic field in the optical fiber. As concerns the physical ori-
including bright and dark solitary waves and shock wavegin of the term on the right-hand side of E@), dissipative
(SWs, i.e., sharp expanding fronts followed by localized losses in optical fiber are represented by the teripu on
excitations and background oscillatidij. These dynamical the same side of the equationy*0 is an attenuation con-
states are typical for Hamiltonian discrete NLS-like systemsstan}. The losses can be compensated by optical amplifiers,
and were found in several physical contexts such as chains gfoviding for abandwidth-limitedgain which may be ap-
two-level atoms with excitons, one-dimensioiaD) ferro-  proximated by terms Su+iauy, with positive 8 and «
magnetic Heisenberg magnets, Toda chains, [dte6]. In  [11]. To exactly compensate the attenuation, one cho@ses
non-Hamiltonian(dissipativg systems, however, a different =vy. The dispersive loss factax that remains in Eq(1)
type of SW can exist, viz., a steadily moving front separatingaccounts both for the naturally limited gain bandwidth of the
two different stategphasey a trivial (zero-amplitudgone,  amplifier, and for the possible additional reduction of the
and a finite-amplitude continuous wat@w). To distinguish  bandwidth induced by optical filters which are used to sup-
this type of SW, we will refer to them as SWSs of a kink type. press noise in optical communication lingkl]. As it was
In contrast with the SWs observed in Hamiltonian lattices,demonstrated analytically and numerically in REd], Eq.
these SWs exist also in continuum models, such as the Bufd) with >0 always gives rise to a stable SW of the form
gers equation, NLS equations with losses, which are of inu(z,t)=U(t—Vz)exp(—ip?2), where the complex function
terest both for applications and by themsely&s-10]. In U takes boundary valued(—«)=0U(+=)=p,p being
particular, there has recently been interest in physically relthe asymptotic cw amplitude, and is the (inversg¢ SWs
evant modifications of the NLS equation that describes theelocity. The SW exists only witlv>0 corresponding to a
light propagation in optical fiber,9] which may give rise situation when the zero-state domain expands into the
to stable SWs of the kink type. The simplest modified NLSenergy-carrying one.
The aim of the present paper is to show that stable SWs of
the kink type exist as well in a dissipative version of the

*Email address: salerno@sa.infn.it discrete NLS equation, and to investigate their basic proper-
"Email address: malomed@eng.tau.ac.il ties, such as the dependence of the velocity and the width of
*Email address: konotop@alfl.cii.fc.ul.pt the wave upon various parameters. We note that similar so-
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lutions have also been found in a modified Toda lattice with +oo

intrinsic losses which is, as a matter of fact, a discrete ver- E= > [|un?=|ua(t=0)|2], 4
sion of the well-known Korteweg—de Vries Burgers equation n=-=
[10]. In models of that type, however, the SWs velocity does N
not depend on the dissipative constant, being determine8nd the Hamiltonian

solely by the asymptotic values of the fieldzate [10]. On Foo

the contrary, we will demonstrate that SWs in the discrete _ 2 [(un+1ar1+in+lun_2|un|2)
dissipative NLS equation move at a constant velocity which n=—o

explicitly depends on the damping parameter. An expression

for the velocity is also obtained by means of the power bal- _ £[|U 14~ |u (t=0)|4]] (5)
ance applied to the second conserved quantity of the system, 28" "

i.e., the “norm” (also called energy in nonlinear optics
This expression, except for the very small damp|ng region, |§)f the conservative version of the model. Here, the variables
found to be in excellent agreement with numerical results. U, Without an explicitly written argument pertain to a given
We remark that the physical realization of our model canmoment of time, whileu, is its complex conjugate. The
be given in terms of an array of nonlinear optical fibers, terms pertaining té=0 are subtracted in Eq&4) and(5) to
being the fiber's number. The dissipative coupling impliessuppress a trivial divergence fat|—c«. Both E andH are
that the fiber array is placed into a weakly lossy medium. Aconserved ife=0. Whena>0, a straightforward consider-
particular example is a configuration in which the array isation leads to the following exact evolution equation Eor
parallel to a planar waveguide, in which light can create free
charge carriers that are subject to diffusion, which takes dE
X : . bl _ 2
place in a semiconductor waveguide. ai 2an:2_w [Un—Un 4] (6)
The paper is organized as follows. In Sec. Il we formulate
the discrete model and discuss some of its properties. In Seg
[l we display typical examples of the SWs produced by
simulations. Section IV is devoted to the analysis of the de

+ oo

hus, for all the configurations, except for the cw state with
all u,, identical, the energy may only decrease in time. In
. ) “contrast to the continuum case and integrable discrete mod-
pendence of the SWs velocity on the asymptotic cw ampll'els like the Toda lattice, our discrete model does not have an

tudep and on the viscosityr, Whlc_h are basic characterls_tlc exact steadily moving solutiotsee also Ref[14]). On the
of the SW. We compare in detail these dependences in th her hand, numerical simulations shdsee below that

discrete and continuum versions of the model. Section SWs of the kink type can be easily formed from initial con-

concludes the paper, and a proof of an important statemenf; ; ; ; e
i ' ! L ; itions in the form of a step function separating two regions:
that the velocity of the SW-like profile in the discrete NLS | energy-carrying region%(,:p for nﬁno) agd a ze?o-

equation may only be zero at=0, is given in the Appendix. energy region §,=0 for n<ny). The propagation of the

shock will destroy the background just like the flame devours
[l. FORMULATION OF THE PROBLEM the wax during its motion along a candle. In analogy with the
Faraday’s candle theofy13,2], the SW will move at a con-
stant velocity determined by a power-balance condition. In-
deed, by adopting the norifd) as the energy, we conclude
that the velocity is a ratio between the power dissipated as
iPer Eq.(6) and the energy density? stored in the back-
ground, i.e.,

It is a subject of principal interest to understand if SWs
exist in a discrete version of the NLS equation including
intrinsic losses, which can prevent the development of dy
namical chaoqobserved in the absence of dampirand
stabilize a SW. The simplest version of such a model
obtained by the direct discretization of E4),

. dE <
iun+(1_ia’)(un+1+un—l_2un)_|un|2un=01 i) VZP*ZHZ_zapfi_Ew |un_un+1|2- (7)
where the evolution variable is noty the overdot standing
for d/dt, and the coefficient in front of the dispersive term is
1 instead of 1/2. This equation is supplemented by th
boundary conditiongb.c,) coinciding with those in the con-
tinuum model described above,

From this expression it is clear that the power balance

velocity of the SW vanishes in the case=0. This complies

ith simulations displayed in Fig. 1: in the absence of the
viscosity, the front spreads out into a chaotic pattern with no
motion of the profile as a whole. In the Appendix we shall
provide for another argument towards the nonexistence of
moving SWs in the absence of dissipation. The spreading out
of the front in the case=0 can be easily explained by the
action of the conservative finite-difference operator in Eq.
(2). Indeed, on the finite background with the intengifythe
gdispersion law for small perturbations with a wave number
Ogﬁives rise to the group velocity

lim u,=0, lim u,=pexp —ip?t). ©)

n— —o n— +o
For an array of nonlinear optical fiber in a weakly lossy

each fiber and the conservative linear coupling accounts f
tunneling of light between adjacent parallel fibgtg].

To demonstrate that the termsa in Eq.(2) [as well as in 5 .
Eqg. (1)], are strictly dissipative, one can define the norm _pt2 sirf (k/2)

(“number of quanta’) for \/p7+siF(k/2)

cogk/2). (8)
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. . o ) FIG. 3. The same as in Fig. 2 wida=0.05 andp=3.8. In this
_FIG. 1. Numerically simulated decay of the initial step in E2).  case the estimat@0) predicts a relatively small width of the shock
with =0 andp=0.4 (plotted quantities are dimensionlgss wave,W~5, in accord with which the formation of a steep, essen-

) _ tially discrete, shock wave is observed. Plotted quantities are di-
Due to the difference between these values on the two sidgfensionless.

of the SW configuratiorifinite p and p=0), one could ex-

pect that the spreading-out of the front at the upper level (ap)™! at ap<1
occurs more rapidly than at the zero level. This is what we Weontin™ _ (10
\/Zp at ap>1.

indeed observe in the simulations of the case0 displayed
in Fig. 1, and also at a transient stage of the evolution in th

weakly dissipative case in Fig. 2. §f the width of the shock is large enough, one may expect

that the discrete model is well approximated by the con-
tinuum one, but the dynamics in the discrete model may be
IIl. NUMERICAL SIMULATIONS OF THE SHOCK WAVE quite different if Eq.(10) predicts a(relatively) small width

To identify the cases in which the mod@) is essentially (S8, =5). As it is seen from Eq(10), taking the limits of
discrete, it is useful to refer to estimates for the SWs width?0th small and larger drives the system out of the region
and velocity derived in Ref9]. According to the estimates, where it is essentially discrete, which is well corroborated by

for small and largea the velocity of the SW of the con- OUr Simulations of Eq(2). In the low-amplitude limit,p

tinuum model can be approximated by —0, the SW becomes very broad also according to([E@)-
However, in the opposite limijp— o, the SW becomes nar-
J2p at ap<l row, thus the study of the discrete model should focus on this
V contin™ (9 case. In particular, if botlx and p are large, the essentially

Ceoninpva  at ap>1, discrete case correspondsp® /. It is relevant to mention

that, in the quasicontinuum limit, one can approximate the
finite-difference operator in Eq2) by u,,1+U,_1—2U,
~ d%ulgn?+ (1/12)9*u/ an*, treatingn as a continuous coor-
dinate and taking into regard the fourth-order correction.
Substituting this approximation into E(R), it is possible to
calculate the SWs velocity in the resulting fourth-order equa-
tion for the underdamped limikp<<1. Without displaying
technical details, the result is the same as for the second-
0.2 order equation(1), i.e., Veonin=\2p, see Eq.9). We also
0=0.05 notice that, in the underdamped case, smooth excitations of a
p=0.4 different type, involving many lattice sites, may exist at large
values ofp [3]. Lastly, when the group-velocity dispersion
for long waves corresponding to the limit of smélin Eq.
(8) vanishegii.e., atp=/3), SWs different from those con-
sidered in the present work are possible, féb
In Figs. 1-4, we display typical examples of the SW
0 found in direct simulations of Eq(2). The equation was
solved numerically using a fourth-order Runge-Kutta scheme
time in the region Bsn<N with periodic boundary conditions,
2500 the lattice sizeN taking values up to 5000 to avoid the in-
fluence of the system’s finite size. The accuracy of the inte-
FIG. 2. Formation of a shock wave from the initial step in Eq. gration scheme was checked in the case0 by controlling
(2) with «=0.05 andp=0.4. In this case the estimat0) predicts ~ the conservation of both the Hamiltonian and the norm. The
a large width of the shock wavay~50, i.e., this is a quasi- Initial configuration was taken as a step between two do-
continuum case. Plotted quantities are dimensionless. mains withu=0 andu=p. As was mentioned above, in

where the facton/2 takes into regard the difference in the
definition of the dispersion coefficient in Eq&l) and (2).
The constanC...in, corresponding to the continuuover-
dampedmodel, is~1 (its exact value was not reported in
Ref. [9]; in this work, it will be found that, in the present
notation,C.ynin iS very close to 0.75). In Ref9] it was also
shown that the size of the shock scales as

luf 0.1

n 0
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2 TABLE I. Values of the empirical coefficiert 4, in Eq. (13),
as found from the numerical data displayed in Fig. 5 for different
values ofa.

a 1 5 10 50

g 1ol Caiser 1.6041 1.2027 1.1318 1.1244

0
ous inference suggested by Fig. 5 is that the dependence
time V(p) is practically linear in the discrete region, resembling
the linear dependend®) in the continuum model. To ex-
500 00 plain this observation, we note that, as was concluded above,
1500 n the strongly discrete model usually corresponds to large val-
ues ofp. This implies that the linear conservative terms in
Eq. (20 may be negligible in comparison with the much
éarger cubic conservative term; hence, dropping the conser-
vative linear terms, the strongly discrete model may be sim-
plified to a form in which its linear part is, effectivelgyer-

the absence of the intrinsic losses=0 (Fig. 1), the initial ~ damped
step quickly spreads out, generating local chaotic oscilla- o .
tions. With >0, a broad SW close to that existing in the iUp=ia(Uni1FUn-1=2Un) =[Up|*up=0. (1)

continuum model is indeed established, after a transient prox id f based h i
cess, in the case when the estimated predict W i1 An ev gnt prqperty 0 'Eq(ll), ased on .t € scaling argu-
' cont ments, is that it gives rise to a SW velocity in the form

(Fig. 2). Contrary to that, an essentially discrete case is illus-
trated by Fig. 3(a finally established SW is essentially dis- o
crete in this case A worth noting transient feature which is Vaso=af(p/Va), (12

apparent in this case is that the initial configuration gives risgyith an unknown functiorf (p//a). A straightforward com-
to two SWs. One of them is originally characterized by theparison of Eq(12) to the numerical results displayed in Fig.

small size of the shock, but it very quickly evolves into ag suggests that the functidiis very close to a linear one,
stable steep SW traveling at a constant velocity. The seco X)= C4..X with some constant coefficietly,,, so that
SW reverses its propagation direction, and then quickly disEq_ (12 kIJSercomeicf. Eq. (9)] iscr

appears. Lastly, an example of a strongly discrete case is

shown in Fig. 4, when a very steep shock sets in almost Vi =C. \/;p' (13
instantaneously. discr— “discr

FIG. 4. The same as in Fig. 2 with=2.0 andp=1.2. In this
case, the estimat€l0) yields the widthwW~1, and a very steep
shock wave is indeed established almost instantaneously. Plott
quantities are dimensionless.

The numerical data produce values of the coefficiégt,,
IV. VELOCITY OF THE SHOCK WAVE displayed in Table I, which slightly depend upen for «

) L ) taking values between 5 and 50, i.e., the simple semiempir-
The most essential characteristics of the established SW [8al relation (13) holds well in this range. A considerable

the dependence of its velociyyand widthW on the param-

) deviation in the case=1 in Table | is quite natural, as in
etersp and «. Results demonstrating thé(p) dependence

f e ) this case neithew nor p (as per Fig. bare large enough to
are displayed in Fig. 5. The use of the estimate® shows  j stify the use of the relatioflL2) pertaining to an effectively

that the lines pertaining ta=5 and a=10 belong to the overdamped lattice. Equatidi3) is also confirmed by Fig.
essentially discrete region at-0.5, and the line correspond- 6, in which the velocity is shown as a function of the damp-
ing to =1 is inside the discrete region at>0.2. An obvi-

10 T

1 10 100

FIG. 6. Velocity of the shock wave vs the dissipative constant
FIG. 5. Velocity of the shock wave found in the numerical on the double logarithmic scale at two fixed values of the cw am-
simulations of Eq(2) vs the asymptotic cw amplitudgeat different  plitude, p=0.8 andp=1.2. According to the continuum-model es-
fixed values of the dissipative constant Plotted quantities are timate (10), the essentially discrete region in this figureais: 25.
dimensionless. Plotted quantities are dimensionless.
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20 . - - . ing to an unavoidable increase of the numerical error. Since
p=1.2 in all other regions the agreement between these velocities is
151 ) excellent, we believe that they would agree also at very small
values of the dissipation parameter provided one could mea-
v sure the velocity in the numerical experiment with adequate
105k accuracy.
An important inference following from the numerical re-
0.51/: sults displayed in Fig. 7 is that both the numerical and the
' power-balance velocity vanish asgoes to zero. This is in
0.0 . . . . apparent contradiction with Eq9), according to which in

0.0 0.2 0.4 0.6 0.8 1.0 the continuum model the velocity keeps a nonzero value
* Veoniin= p asa— 0. However, this constant value pertains, in
FIG. 7. The same as in Fig. 6, but at small valuesradnd on  the limit «— 0, to an infinitely long system which is clearly
the usual scale. The triangles and circles show, respectively, theuggested by Eq10): the system’s length must be much
velocity defined as per Eq7) and as the distance traveled by the larger tharW, i~ (ap) ~ %, while the present numerical re-
shock wave divided by the time. For this figure, the continuum-sults were obtained for a system with a large but fixed size.
model estimatg10) predicts that the essentially discrete region is |n fact, numerical data presented in R&f] show a trend for
a>0.4. Plotted quantities are dimensionless. some decrease of the actual value\g§, for small «,
) ) ) ) although this issue was not investigated in detail at very
ing for fixed values of (note the logarithmic scalesFrom gy values ofw. On the other hand, it is very natural to
this figure we see that the velocity scales exactly as in EQeypect that inboth continuum and discrete large but finite
(13) with Cgiscr~1.12, i.e., with the same coefficient as in gystems, the SW velocity must indeed be vanishing in the
Table | at large damping. Thus, a ger!eral conclusion is thajfm;t a—0, as in the absence of dissipation=0) there is
the dependence¥(p) for the (effectively) overdamped 4 cause for the empty region to expand ousting the energy-
model have a similar form in the discrete and continuumeayrying background. More accurately, we conjecture that, as
cases, cf. Eqs(9) and (13), but with different numerical  the system'’s size is tending to infinity, the region of small
coefficients,Ceoni=0.75 andCyjser~1.12. in which the velocity drops to zero is getting infinitely nar-
~ Thesituation is quite different in the underdamped case. lto\y. However, we did not check this conjecture in detail, as,
is worth noting that, in this case, the veloglty calculated a%eing far from real physical applications, it requires very
per Eq.(7) may be different from the straightforward one eytensive simulations with high accuracy. Lastly, we notice
extragt(_ad from the _S|mulat|ons, i.e., the distance passed b[}ﬁat, as suggested by Fig. 7, the velocity can be regarded as
SW divided by the time. The dependence of the SW's velocyeing approximately constant for moderately sraglt steep
ity, defined in both ways, upon the dissipative cons@m@t 5 1o zero occurring only at very small values @f(see Fig.
a fixed value ofp is shown in Fig. 7 for the underdamped 7) \oreover, this roughly constant value is fairly close, for
case. As is seen, the numerical and the power-balance veloggh, valuesp=0.8 andp=1.2, to y2p, in accord with the
ity yield very close results for>0.3, while at smallerr the prediction of the continuum model fémoderately small «,
power-balance expression in E() yields results that ap- s Eq (9). Besides the velocity, it is also interesting to
pear to be much more natural than the ones obtained fro'@tudy a dependence of a SWs size on the model's param-
numerical simulationgin the range ofw shown in Figs. 5 gters. In this connection, however, one should remember that

and 6, the numerical and the power-balance velocity coing fairly smooth dependence of the widiimlike that for the

cide). This discrepancy is due to the difficulty of measuringg|ocity) is only possible in the quasicontinuum case. To this
the numerical velocity at very small damping. In this region, o4 we have estimated the widiti of the shock by com-

indeed, the wave is very broddee Fig. 8 and moves very . ing the area underlying the modulus of its space deriva-
slowly with a profile which fluctuates in timsee Fig. 1. An e profile, and equating it to the area of a rectangle with

accurate measure of the velocity in this case would requires g cis\w and height given by the maximum of the profile. We
very large system and a very long integration time, this leadgpecked that in the quasicontinuum case this provides a good
estimate of the width. At several fixed values of the back-

300 ' ' ' ground amplitude (including those for which the velocity
was displayed as a function ef in Figs. 5 and ¥, we have
s00l | collected data for the width in a region where it turns out to
be a reasonably smooth function of the dissipative constant.
w These results are shown in Fig. 8 from which one can see
p=1.2 that they are in good agreement with the prediction given by
100F 0=0.8 i the upper part of the analytical estimdfi).
S e
Gl AN V. CONCLUSION
0.0 0.5 1.0 1.5 2.0

In this work we have studied shock waves, converting an
FIG. 8. Width of the shock wave vs the dissipative constaat ~ €nergy-carrying domain into an empty one, in a discrete ver-

three fixed values of the cw amplitudp=0.8, p=1.2, andp sion of the normal-dispersion nonlinear Safirmer equa-

=1.6. Plotted quantities are dimensionless. tion with intrinsic losses, which can describe, e.g., an array
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of nonlinear optical fibers in a weakly lossy medium. Stableity do not exist. To this end, we adopt the definition of the

(receding shock waves were found and compared to theirSW kinklike solution asup(t) =U(n—Vt)exp(ip?),

counterparts in the earlier studied continuum model. In thavhere|U|? is amonotonicfunction of its argument, and is

overdamped case the dependence of the shock-wave’s velafe velocity. Then, atv=0,

ity on the amplitude of the energy-carrying background is

characterized by a simple linear law, which differs only by a 2 21— _ 2 P

value of the numerical coefficient from a similar law in the 2 [lun(®]*= |un(0)] ]_zn: [lU(n=VD[*=[u(m[*]=0.

continuum model. For the underdamped case, we have found (A1)

that the velocity of the shock-wave is vanishing along with _ . . _

the loss constant, which is in formal contradiction with the @S this sum is a conserved quantity according to(Ej.and

constant value of the velocity reported in RE®] for the it is zero att=0. On the other hand, using an identity

continuum model. The contradiction is explained by the fact W he1

that the latter value was actually predicted for an infinitely Vf > f(n—Vt)dt=—, J f(&)de,  (A2)

long system, for which the drop of the velocity to zero oc- 0 n n Jn

curs at infinitely smalk, so that the velocity remains nearly

constant at small finite values af. In fact, the numerical

results obtained for the discrete model at moderately small W

are in reasonable agreement with the analytical prediction of Vf > [JU(n=Vt)|2—|u(n)|?]dt

the continuum model. The dependence of the shock-wave’s on

width on the dissipative constant was displayed, too, also n

being in good agreement with an analytical estimate. => f [[U(&)]? —|U(n)|?]dé. (A3)
n n-1

we arrive at a relation
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APPENDIX: NONEXISTENCE OF MOVING SHOCK
WAVES IN THE DISSIPATIONLESS LIMIT
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