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Shock wave dynamics in a discrete nonlinear Schro¨dinger equation with internal losses
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Propagation of a shock wave~SW!, converting an energy-carrying domain into an empty one, is studied in
a discrete version of the normal-dispersion nonlinear Schro¨dinger equation with viscosity, which may describe,
e.g., an array of optical fibers in a weakly lossy medium. It is found that the SW in the discrete model is stable,
as well as in its earlier studied continuum counterpart. In a strongly discrete case, the dependence of the SWs
velocity upon the amplitude of the energy-carrying background is found to obey a simple linear law, which
differs by a value of the proportionality coefficient from a similar law in the continuum model. For the
underdamped case, the velocity of the shock wave is found to be vanishing along with the viscosity constant.
We argue that the latter feature is universal for long but finite systems, both discrete and continuum. The
dependence of the SW’s width on the parameters of the system is also discussed.

PACS number~s!: 42.65.Tg, 05.45.Yv, 42.81.Dp
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I. INTRODUCTION

The discrete nonlinear Schro¨dinger equation~NLS!, also
called the discrete self-trapping equation@1#, is a well-known
dynamical model with numerous physical applications ra
ing from nonlinear optics to the theory of molecular vibr
tions @2#. Unlike its celebrated continuum counterpart, t
NLS equation proper, the discrete NLS equation is not in
grable for systems with more than two sites~as, besides the
Hamiltonian, the model has only one more conserved qu
tity!, and it does not have exact soliton solutions. In spite
this, it demonstrates a rich variety of dynamical behavio
including bright and dark solitary waves and shock wav
~SWs!, i.e., sharp expanding fronts followed by localize
excitations and background oscillations@3#. These dynamica
states are typical for Hamiltonian discrete NLS-like syste
and were found in several physical contexts such as chain
two-level atoms with excitons, one-dimensional~1D! ferro-
magnetic Heisenberg magnets, Toda chains, etc.@4–6#. In
non-Hamiltonian~dissipative! systems, however, a differen
type of SW can exist, viz., a steadily moving front separat
two different states~phases!, a trivial ~zero-amplitude! one,
and a finite-amplitude continuous wave~cw!. To distinguish
this type of SW, we will refer to them as SWs of a kink typ
In contrast with the SWs observed in Hamiltonian lattic
these SWs exist also in continuum models, such as the
gers equation, NLS equations with losses, which are of
terest both for applications and by themselves@7–10#. In
particular, there has recently been interest in physically
evant modifications of the NLS equation that describes
light propagation in optical fibers@8,9# which may give rise
to stable SWs of the kink type. The simplest modified N
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equation that supports them is the one considered in Ref.@9#:
it is the usual NLS equation with thenormal dispersion
~which is necessary to make the cw state modulation
stable!, to which a single additional term, describing intrins
dispersive~diffusionlike! losses, is added,

iuz1~1/2!utt2uuu2u5 iautt . ~1!

This equation is written in the standard ‘‘fiber’’ notatio
@11#, with z, t, andu standing for, respectively, the propag
tion distance,reduced time, and envelope of the electromag
netic field in the optical fiber. As concerns the physical o
gin of the term on the right-hand side of Eq.~1!, dissipative
losses in optical fiber are represented by the term2 igu on
the same side of the equation (g.0 is an attenuation con
stant!. The losses can be compensated by optical amplifi
providing for a bandwidth-limitedgain which may be ap-
proximated by termsibu1 iautt , with positive b and a
@11#. To exactly compensate the attenuation, one chooseb
5g. The dispersive loss factora that remains in Eq.~1!
accounts both for the naturally limited gain bandwidth of t
amplifier, and for the possible additional reduction of t
bandwidth induced by optical filters which are used to su
press noise in optical communication lines@11#. As it was
demonstrated analytically and numerically in Ref.@9#, Eq.
~1! with a.0 always gives rise to a stable SW of the for
u(z,t)5U(t2Vz)exp(2ir2z), where the complex function
U takes boundary valuesU(2`)50,U(1`)5r,r being
the asymptotic cw amplitude, andV is the ~inverse! SWs
velocity. The SW exists only withV.0 corresponding to a
situation when the zero-state domain expands into
energy-carrying one.

The aim of the present paper is to show that stable SW
the kink type exist as well in a dissipative version of t
discrete NLS equation, and to investigate their basic prop
ties, such as the dependence of the velocity and the widt
the wave upon various parameters. We note that similar
8651 ©2000 The American Physical Society
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8652 PRE 62SALERNO, MALOMED, AND KONOTOP
lutions have also been found in a modified Toda lattice w
intrinsic losses which is, as a matter of fact, a discrete v
sion of the well-known Korteweg–de Vries Burgers equat
@10#. In models of that type, however, the SWs velocity do
not depend on the dissipative constant, being determi
solely by the asymptotic values of the field at6` @10#. On
the contrary, we will demonstrate that SWs in the discr
dissipative NLS equation move at a constant velocity wh
explicitly depends on the damping parameter. An express
for the velocity is also obtained by means of the power b
ance applied to the second conserved quantity of the sys
i.e., the ‘‘norm’’ ~also called energy in nonlinear optics!.
This expression, except for the very small damping region
found to be in excellent agreement with numerical result

We remark that the physical realization of our model c
be given in terms of an array of nonlinear optical fibersn
being the fiber’s number. The dissipative coupling impl
that the fiber array is placed into a weakly lossy medium
particular example is a configuration in which the array
parallel to a planar waveguide, in which light can create f
charge carriers that are subject to diffusion, which ta
place in a semiconductor waveguide.

The paper is organized as follows. In Sec. II we formul
the discrete model and discuss some of its properties. In
III we display typical examples of the SWs produced
simulations. Section IV is devoted to the analysis of the
pendence of the SWs velocity on the asymptotic cw am
tuder and on the viscositya, which are basic characteristi
of the SW. We compare in detail these dependences in
discrete and continuum versions of the model. Section
concludes the paper, and a proof of an important statem
that the velocity of the SW-like profile in the discrete NL
equation may only be zero ata50, is given in the Appendix.

II. FORMULATION OF THE PROBLEM

It is a subject of principal interest to understand if SW
exist in a discrete version of the NLS equation includi
intrinsic losses, which can prevent the development of
namical chaos~observed in the absence of damping! and
stabilize a SW. The simplest version of such a mode
obtained by the direct discretization of Eq.~1!,

i u̇n1~12 ia!~un111un2122un!2uunu2un50, ~2!

where the evolution variable is nowt, the overdot standing
for d/dt, and the coefficient in front of the dispersive term
1 instead of 1/2. This equation is supplemented by
boundary conditions~b.c.! coinciding with those in the con
tinuum model described above,

lim
n→2`

un50, lim
n→1`

un5r exp~2 ir2t !. ~3!

For an array of nonlinear optical fiber in a weakly los
medium, t has the meaning of propagation distance alo
each fiber and the conservative linear coupling accounts
tunneling of light between adjacent parallel fibers@12#.

To demonstrate that the terms;a in Eq. ~2! @as well as in
Eq. ~1!#, are strictly dissipative, one can define the no
~‘‘number of quanta’’!
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E5 (
n52`

1`

@ uunu22uun~ t50!u2#, ~4!

and the Hamiltonian

H5 (
n52`

1` H ~un11ūn1ūn11un22uunu2!

2
1

2
@ uunu42uun~ t50!u4#J ~5!

of the conservative version of the model. Here, the variab
un without an explicitly written argument pertain to a give
moment of time, whileūn is its complex conjugate. The
terms pertaining tot50 are subtracted in Eqs.~4! and~5! to
suppress a trivial divergence atunu→`. Both E and H are
conserved ifa50. Whena.0, a straightforward consider
ation leads to the following exact evolution equation forE:

dE

dt
522a (

n52`

1`

uun2un11u2. ~6!

Thus, for all the configurations, except for the cw state w
all un identical, the energy may only decrease in time.
contrast to the continuum case and integrable discrete m
els like the Toda lattice, our discrete model does not have
exact steadily moving solution~see also Ref.@14#!. On the
other hand, numerical simulations show~see below! that
SWs of the kink type can be easily formed from initial co
ditions in the form of a step function separating two regio
an energy-carrying region (un5r for n.n0) and a zero-
energy region (un50 for n,n0). The propagation of the
shock will destroy the background just like the flame devo
the wax during its motion along a candle. In analogy with t
Faraday’s candle theory@13,2#, the SW will move at a con-
stant velocity determined by a power-balance condition.
deed, by adopting the norm~4! as the energy, we conclud
that the velocity is a ratio between the power dissipated
per Eq. ~6! and the energy densityr2 stored in the back-
ground, i.e.,

V5r22
dE

dt
522ar22 (

n52`

1`

uun2un11u2. ~7!

From this expression it is clear that the power balan
velocity of the SW vanishes in the casea50. This complies
with simulations displayed in Fig. 1: in the absence of t
viscosity, the front spreads out into a chaotic pattern with
motion of the profile as a whole. In the Appendix we sh
provide for another argument towards the nonexistence
moving SWs in the absence of dissipation. The spreading
of the front in the casea50 can be easily explained by th
action of the conservative finite-difference operator in E
~2!. Indeed, on the finite background with the intensityr, the
dispersion law for small perturbations with a wave numbek
gives rise to the group velocity

vgr5
r212 sin2~k/2!

Ar21sin2~k/2!
cos~k/2!. ~8!
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Due to the difference between these values on the two s
of the SW configuration~finite r andr50), one could ex-
pect that the spreading-out of the front at the upper le
occurs more rapidly than at the zero level. This is what
indeed observe in the simulations of the casea50 displayed
in Fig. 1, and also at a transient stage of the evolution in
weakly dissipative case in Fig. 2.

III. NUMERICAL SIMULATIONS OF THE SHOCK WAVE

To identify the cases in which the model~2! is essentially
discrete, it is useful to refer to estimates for the SWs wi
and velocity derived in Ref.@9#. According to the estimates
for small and largea the velocity of the SW of the con
tinuum model can be approximated by

Vcontin'HA2r at ar!1

CcontinrAa at ar@1,
~9!

where the factorA2 takes into regard the difference in th
definition of the dispersion coefficient in Eqs.~1! and ~2!.
The constantCcontin, corresponding to the continuumover-
dampedmodel, is;1 ~its exact value was not reported
Ref. @9#; in this work, it will be found that, in the presen
notation,Ccontin is very close to 0.75). In Ref.@9# it was also
shown that the size of the shock scales as

FIG. 1. Numerically simulated decay of the initial step in Eq.~2!
with a50 andr50.4 ~plotted quantities are dimensionless!.

FIG. 2. Formation of a shock wave from the initial step in E
~2! with a50.05 andr50.4. In this case the estimate~10! predicts
a large width of the shock wave,W;50, i.e., this is a quasi-
continuum case. Plotted quantities are dimensionless.
es

l
e

e

h

Wcontin;H ~ar!21 at ar!1

Aar21 at ar@1.
~10!

If the width of the shock is large enough, one may exp
that the discrete model is well approximated by the co
tinuum one, but the dynamics in the discrete model may
quite different if Eq.~10! predicts a~relatively! small width
~say,&5). As it is seen from Eq.~10!, taking the limits of
both small and largea drives the system out of the regio
where it is essentially discrete, which is well corroborated
our simulations of Eq.~2!. In the low-amplitude limit,r
→0, the SW becomes very broad also according to Eq.~10!.
However, in the opposite limit,r→`, the SW becomes nar
row, thus the study of the discrete model should focus on
case. In particular, if botha andr are large, the essentiall
discrete case corresponds tor@Aa. It is relevant to mention
that, in the quasicontinuum limit, one can approximate
finite-difference operator in Eq.~2! by un111un2122un
']2u/]n21(1/12)]4u/]n4, treatingn as a continuous coor
dinate and taking into regard the fourth-order correctio
Substituting this approximation into Eq.~2!, it is possible to
calculate the SWs velocity in the resulting fourth-order eq
tion for the underdamped limitar!1. Without displaying
technical details, the result is the same as for the seco
order equation~1!, i.e., Vcontin5A2r, see Eq.~9!. We also
notice that, in the underdamped case, smooth excitations
different type, involving many lattice sites, may exist at lar
values ofr @3#. Lastly, when the group-velocity dispersio
for long waves corresponding to the limit of smallk in Eq.
~8! vanishes~i.e., atr5A3), SWs different from those con
sidered in the present work are possible, too@4#.

In Figs. 1–4, we display typical examples of the S
found in direct simulations of Eq.~2!. The equation was
solved numerically using a fourth-order Runge-Kutta sche
in the region 0<n<N with periodic boundary conditions
the lattice sizeN taking values up to 5000 to avoid the in
fluence of the system’s finite size. The accuracy of the in
gration scheme was checked in the casea50 by controlling
the conservation of both the Hamiltonian and the norm. T
initial configuration was taken as a step between two
mains with u50 and u5r. As was mentioned above, i

FIG. 3. The same as in Fig. 2 witha50.05 andr53.8. In this
case the estimate~10! predicts a relatively small width of the shoc
wave,W;5, in accord with which the formation of a steep, esse
tially discrete, shock wave is observed. Plotted quantities are
mensionless.
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8654 PRE 62SALERNO, MALOMED, AND KONOTOP
the absence of the intrinsic losses,a50 ~Fig. 1!, the initial
step quickly spreads out, generating local chaotic osc
tions. With a.0, a broad SW close to that existing in th
continuum model is indeed established, after a transient
cess, in the case when the estimates~10! predictWcontin@1
~Fig. 2!. Contrary to that, an essentially discrete case is ill
trated by Fig. 3.~a finally established SW is essentially di
crete in this case!. A worth noting transient feature which i
apparent in this case is that the initial configuration gives
to two SWs. One of them is originally characterized by t
small size of the shock, but it very quickly evolves into
stable steep SW traveling at a constant velocity. The sec
SW reverses its propagation direction, and then quickly d
appears. Lastly, an example of a strongly discrete cas
shown in Fig. 4, when a very steep shock sets in alm
instantaneously.

IV. VELOCITY OF THE SHOCK WAVE

The most essential characteristics of the established S
the dependence of its velocityV and widthW on the param-
etersr and a. Results demonstrating theV(r) dependence
are displayed in Fig. 5. The use of the estimates~10! shows
that the lines pertaining toa55 anda510 belong to the
essentially discrete region atr.0.5, and the line correspond
ing to a51 is inside the discrete region atr.0.2. An obvi-

FIG. 4. The same as in Fig. 2 witha52.0 andr51.2. In this
case, the estimate~10! yields the widthW;1, and a very steep
shock wave is indeed established almost instantaneously. Pl
quantities are dimensionless.

FIG. 5. Velocity of the shock wave found in the numeric
simulations of Eq.~2! vs the asymptotic cw amplituder at different
fixed values of the dissipative constanta. Plotted quantities are
dimensionless.
-
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ous inference suggested by Fig. 5 is that the depende
V(r) is practically linear in the discrete region, resembli
the linear dependence~9! in the continuum model. To ex
plain this observation, we note that, as was concluded ab
the strongly discrete model usually corresponds to large
ues ofr. This implies that the linear conservative terms
Eq. ~2! may be negligible in comparison with the muc
larger cubic conservative term; hence, dropping the con
vative linear terms, the strongly discrete model may be s
plified to a form in which its linear part is, effectively,over-
damped,

i u̇n2 ia~un111un2122un!2uunu2un50. ~11!

An evident property of Eq.~11!, based on the scaling argu
ments, is that it gives rise to a SW velocity in the form

Vdiscr5a f ~r/Aa!, ~12!

with an unknown functionf (r/Aa). A straightforward com-
parison of Eq.~12! to the numerical results displayed in Fig
5 suggests that the functionf is very close to a linear one
f (x)5Cdiscrx with some constant coefficientCdiscr, so that
Eq. ~12! becomes@cf. Eq. ~9!#

Vdiscr5CdiscrAar. ~13!

The numerical data produce values of the coefficientCdiscr
displayed in Table I, which slightly depend upona, for a
taking values between 5 and 50, i.e., the simple semiem
ical relation ~13! holds well in this range. A considerabl
deviation in the casea51 in Table I is quite natural, as in
this case neithera nor r ~as per Fig. 5! are large enough to
justify the use of the relation~12! pertaining to an effectively
overdamped lattice. Equation~13! is also confirmed by Fig.
6, in which the velocity is shown as a function of the dam

ed

TABLE I. Values of the empirical coefficientCdiscr in Eq. ~13!,
as found from the numerical data displayed in Fig. 5 for differe
values ofa.

a 1 5 10 50

Cdiscr 1.6041 1.2027 1.1318 1.1244

FIG. 6. Velocity of the shock wave vs the dissipative constana
on the double logarithmic scale at two fixed values of the cw a
plitude,r50.8 andr51.2. According to the continuum-model es
timate ~10!, the essentially discrete region in this figure isa,25.
Plotted quantities are dimensionless.
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ing for fixed values ofr ~note the logarithmic scales!. From
this figure we see that the velocity scales exactly as in
~13! with Cdiscr'1.12, i.e., with the same coefficient as
Table I at large damping. Thus, a general conclusion is
the dependencesV(r) for the ~effectively! overdamped
model have a similar form in the discrete and continu
cases, cf. Eqs.~9! and ~13!, but with different numerical
coefficients,Ccontin'0.75 andCdiscr'1.12.

The situation is quite different in the underdamped case
is worth noting that, in this case, the velocity calculated
per Eq. ~7! may be different from the straightforward on
extracted from the simulations, i.e., the distance passed
SW divided by the time. The dependence of the SW’s vel
ity, defined in both ways, upon the dissipative constanta at
a fixed value ofr is shown in Fig. 7 for the underdampe
case. As is seen, the numerical and the power-balance v
ity yield very close results fora.0.3, while at smallera the
power-balance expression in Eq.~7! yields results that ap
pear to be much more natural than the ones obtained f
numerical simulations~in the range ofa shown in Figs. 5
and 6, the numerical and the power-balance velocity co
cide!. This discrepancy is due to the difficulty of measuri
the numerical velocity at very small damping. In this regio
indeed, the wave is very broad~see Fig. 8!, and moves very
slowly with a profile which fluctuates in time~see Fig. 1!. An
accurate measure of the velocity in this case would requir
very large system and a very long integration time, this le

FIG. 7. The same as in Fig. 6, but at small values ofa and on
the usual scale. The triangles and circles show, respectively,
velocity defined as per Eq.~7! and as the distance traveled by th
shock wave divided by the time. For this figure, the continuu
model estimate~10! predicts that the essentially discrete region
a.0.4. Plotted quantities are dimensionless.

FIG. 8. Width of the shock wave vs the dissipative constanta at
three fixed values of the cw amplitude,r50.8, r51.2, andr
51.6. Plotted quantities are dimensionless.
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ing to an unavoidable increase of the numerical error. Si
in all other regions the agreement between these velocitie
excellent, we believe that they would agree also at very sm
values of the dissipation parameter provided one could m
sure the velocity in the numerical experiment with adequ
accuracy.

An important inference following from the numerical re
sults displayed in Fig. 7 is that both the numerical and
power-balance velocity vanish asa goes to zero. This is in
apparent contradiction with Eq.~9!, according to which in
the continuum model the velocity keeps a nonzero va
Vcontin5r asa→0. However, this constant value pertains,
the limit a→0, to an infinitely long system which is clearl
suggested by Eq.~10!: the system’s length must be muc
larger thanWcontin;(ar)21, while the present numerical re
sults were obtained for a system with a large but fixed s
In fact, numerical data presented in Ref.@9# show a trend for
some decrease of the actual value ofVcontin for small a,
although this issue was not investigated in detail at v
small values ofa. On the other hand, it is very natural t
expect that inboth continuum and discrete large but finit
systems, the SW velocity must indeed be vanishing in
limit a→0, as in the absence of dissipation (a50) there is
no cause for the empty region to expand ousting the ene
carrying background. More accurately, we conjecture that
the system’s size is tending to infinity, the region of smalla
in which the velocity drops to zero is getting infinitely na
row. However, we did not check this conjecture in detail,
being far from real physical applications, it requires ve
extensive simulations with high accuracy. Lastly, we not
that, as suggested by Fig. 7, the velocity can be regarde
being approximately constant for moderately smalla, a steep
fall to zero occurring only at very small values ofa ~see Fig.
7!. Moreover, this roughly constant value is fairly close, f
both valuesr50.8 andr51.2, toA2r, in accord with the
prediction of the continuum model for~moderately! smalla,
see Eq.~9!. Besides the velocity, it is also interesting
study a dependence of a SWs size on the model’s par
eters. In this connection, however, one should remember
a fairly smooth dependence of the width~unlike that for the
velocity! is only possible in the quasicontinuum case. To t
end, we have estimated the widthW of the shock by com-
puting the area underlying the modulus of its space der
tive profile, and equating it to the area of a rectangle w
basisW and height given by the maximum of the profile. W
checked that in the quasicontinuum case this provides a g
estimate of the width. At several fixed values of the bac
ground amplituder ~including those for which the velocity
was displayed as a function ofa in Figs. 5 and 7!, we have
collected data for the width in a region where it turns out
be a reasonably smooth function of the dissipative const
These results are shown in Fig. 8 from which one can
that they are in good agreement with the prediction given
the upper part of the analytical estimate~10!.

V. CONCLUSION

In this work we have studied shock waves, converting
energy-carrying domain into an empty one, in a discrete v
sion of the normal-dispersion nonlinear Schro¨dinger equa-
tion with intrinsic losses, which can describe, e.g., an ar
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8656 PRE 62SALERNO, MALOMED, AND KONOTOP
of nonlinear optical fibers in a weakly lossy medium. Sta
~receding! shock waves were found and compared to th
counterparts in the earlier studied continuum model. In
overdamped case the dependence of the shock-wave’s v
ity on the amplitude of the energy-carrying background
characterized by a simple linear law, which differs only by
value of the numerical coefficient from a similar law in th
continuum model. For the underdamped case, we have fo
that the velocity of the shock-wave is vanishing along w
the loss constanta, which is in formal contradiction with the
constant value of the velocity reported in Ref.@9# for the
continuum model. The contradiction is explained by the f
that the latter value was actually predicted for an infinite
long system, for which the drop of the velocity to zero o
curs at infinitely smalla, so that the velocity remains near
constant at small finite values ofa. In fact, the numerical
results obtained for the discrete model at moderately smaa
are in reasonable agreement with the analytical predictio
the continuum model. The dependence of the shock-wa
width on the dissipative constant was displayed, too, a
being in good agreement with an analytical estimate.
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APPENDIX: NONEXISTENCE OF MOVING SHOCK
WAVES IN THE DISSIPATIONLESS LIMIT

In this appendix we give an analytical argument whi
show that at zero damping (a50) SWs with nonzero veloc
d

v.
e
ir
e
oc-
s

nd

t

-

of
’s
o

ity do not exist. To this end, we adopt the definition of t
SW kinklike solution as un(t) 5U(n2Vt)exp(2ir2t),
whereuUu2 is amonotonicfunction of its argument, andV is
the velocity. Then, ata50,

(
n

@ uun~ t !u22uun~0!u2#[(
n

@ uU~n2Vt!u22uU~n!u2#50,

~A1!

as this sum is a conserved quantity according to Eq.~6!, and
it is zero att50. On the other hand, using an identity

VE
0

1/V

(
n

f ~n2Vt! dt52(
n
E

n

n21

f ~j! dj, ~A2!

we arrive at a relation

VE
0

1/V

(
n

@ uU~n2Vt!u22uU~n!u2#dt

5(
n
E

n21

n

@ uU~j!u2 2uU~n!u2#dj. ~A3!

Because the functionuU(j)u2 is assumed to be monotonic
the expression@ uU(j)u2 2uU(n)u2# does not change its sig
when j belongs to the interval (n21,n), hence the right-
hand side of Eq.~A3! cannot be equal to 0, and, conse
quently, the expression on the left-hand side of the equa
is not zero either. The latter inference is in direct contrad
tion with Eq. ~A1!, which proves that the discrete NLS-lik
models conserving the norm(n@ uun(t)u22uun(0)u2# cannot
have solutions in the form of moving SWs. Note that oth
arguments in favor of the nonexistence of traveling kink s
lutions to discrete conservative NLS-like models were giv
in Ref. @14#.
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